Kazhdan–Lusztig polynomials of boolean elements
نویسندگان
چکیده
We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type q in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of the group. In the case of classical Weyl groups, this combinatorial interpretation can be restated in terms of statistics of (signed) permutations. As an application of the formulas, we compute the intersection homology Poincaré polynomials of the Schubert varieties of boolean elements. Résumé. Nous donnons des formules combinatories pour les polynômes de Kazhdan-Lusztig et leurs analogues parabolique de type q pour les éléments booléens, introduite dans [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], dans les groupes de Coxeter dont le graphe de Coxeter est un arbre. Ces formules utilisent les nombres de Catalan et une interprétation combinatoire des graphes du groupe de Coxeter. Dans le cas des groupes de Weyl classiques, cette interprétation combinatoire peut être reformulée en termes de statistiques de permutations avec signe. Avec ces formules, on peut calculer le polynôme de l’intersection homologie de Poincaré pour la variété de Schubert de booléen éléments.
منابع مشابه
Special matchings and Kazhdan-Lusztig polynomials
In 1979 Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements ofW , which have become known as the Kazhdan-Lusztig polynomials of W , and which have proven to be of importance in several areas of mathematics. In this paper we show that the combinatorial concept of a special matching plays a fundamental role in the computation of these pol...
متن کاملLattice Paths and Kazhdan-lusztig Polynomials
In their fundamental paper [18] Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed by pairs of elements of W , which have become known as the Kazhdan-Lusztig polynomials of W (see, e.g., [17], Chap. 7). These polynomials are intimately related to the Bruhat order of W and to the geometry of Schubert varieties, and have proven to be of fundamental importanc...
متن کاملEmbedded Factor Patterns for Deodhar Elements in Kazhdan-Lusztig Theory
The Kazhdan-Lusztig polynomials for finite Weyl groups arise in the geometry of Schubert varieties and representation theory. It was proved very soon after their introduction that they have nonnegative integer coefficients, but no simple all positive interpretation for them is known in general. Deodhar [16] has given a framework for computing the Kazhdan-Lusztig polynomials which generally invo...
متن کاملDeformed Kazhdan-Lusztig elements and Macdonald polynomials
We introduce deformations of Kazhdan-Lusztig elements and degenerate nonsymmetric Macdonald polynomials, both of which form a distinguished basis of the polynomial representation of the maximal parabolic subalgebra of the Hecke algebra. We give explicit integral formula for these polynomials, and explicitly describe the transition matrices between classes of polynomials. We further develop a co...
متن کاملUpper and Lower Bounds for Kazhdan-Lusztig Polynomials
We give upper and lower bounds for the Kazhdan-Lusztig polynomials of any Coxeter group W. If W is nite we prove that, for any k 0, the k-th coeecient of the Kazhdan-Lusztig polynomial of two elements u, v of W is bounded from above and below by a polynomial (which depends only on k) in l(v)?l(u). In particular, this implies the validity of Lascoux-Schutzenberger's conjecture for all suuciently...
متن کامل